43 research outputs found

    Performance and programmability comparison of the thick control flow architecture and current multicore processors

    Get PDF
    Commercial multicore central processing units (CPU) integrate a number of processor cores on a single chip to support parallel execution of computational tasks. Multicore CPUs can possibly improve performance over single cores for independent parallel tasks nearly linearly as long as sufficient bandwidth is available. Ideal speedup is, however, difficult to achieve when dense intercommunication between the cores or complex memory access patterns is required. This is caused by expensive synchronization and thread switching, and insufficient latency toleration. These facts guide programmers away from straight-forward parallel processing patterns toward complex and error-prone programming techniques. To address these problems, we have introduced the Thick control flow (TCF) Processor Architecture. TCF is an abstraction of parallel computation that combines self-similar threads into computational entities. In this paper, we compare the performance and programmability of an entry-level TCF processor and two Intel Skylake multicore CPUs on commonly used parallel kernels to find out how well our architecture solves these issues that greatly reduce the productivity of parallel software development. Code examples are given and programming experiences recorded

    Noninvasive and Quantitative Monitoring of the Distributions and Kinetics of MicroRNA-Targeting Molecules in Vivo by Positron Emission Tomography

    Get PDF
    MicroRNAs (miRNAs) are endogenous, small, noncoding ribonucleic acids (RNAs) that bind to the 3' untranslated regions of messenger RNAs (mRNAs) and induce translational repression or mRNA degradation. Although numerous studies have reported that miRNAs are of potential use for disease diagnostics and gene therapy, little is known about their fates in vivo. This study elucidated the whole-body distributions and kinetics of intravenously administered miRNA-targeting molecules in vivo by positron emission tomography (PET) imaging. A 22-mer sequence targeting miR-1513 was conjugated with three different chelators and labeled with gallium-68 (Ga-68). These tracers were compared with a scrambled 22-mer sequence; 22-mer with two single base substitutions; anti-miR-34 22-mer; hexathymidylate (T-6), a 6-mer sequence; and an unconjugated chelator. miR-15b was chosen as a target because it is important for bone remodeling. All three Ga-68-labeled anti-miR-15b molecules had similar biodistributions and kinetics, and they all accumulated in the bones, kidneys, and liver. The bone accumulation of these tracers was the highest in the epiphyses of long tubular bones, maxilla, and mandible. By contrast, the scrambled 22-mer sequence, the 6-mer, and the unconjugated chelator did not accumulate in bones. PET imaging successfully elucidated the distributions and kinetics of Ga-68-labeled chelated miRNA-targeting molecules in vivo. This approach is potentially useful to evaluate new miRNA-based drugs

    Seasonal variation in the brain μ-opioid receptor availability

    Get PDF
    Seasonal rhythms influence emotion and sociability. The brain μ-opioid receptor (MOR) system modulates a multitude of seasonally varying socioemotional functions, but its seasonal variation remains elusive with no previously reported in vivo evidence. Here, we first conducted a cross-sectional study with previously acquired human [11C]carfentanil PET imaging data (132 male and 72 female healthy subjects) to test whether there was seasonal difference in MOR availability. We then investigated experimentally whether seasonal variation in daylength causally influences brain MOR availability in rats. Rats (six male and three female rats) underwent daylength cycle simulating seasonal changes; control animals (two male and one female rats) were kept under constant daylength. Animals were scanned repeatedly with [11C]carfentanil PET imaging. Seasonally varying daylength had an inverted U-shaped functional relationship with brain MOR availability in humans. Brain regions sensitive to daylength spanned the socio-emotional brain circuits, where MOR availability formed a spring-like peak. In rats, MOR availabilities in the brain neocortex, thalamus and striatum peaked at intermediate daylength. Varying daylength also affected the weight gain and stress hormone. We conclude that the in vivo brain MOR availability in humans and rats shows significant seasonal variation, which is predominately associated with seasonal photoperiodic variation. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.</p

    REPLICA T7-16-128 - A 2048-threaded 16-core 7-FU chained VLIW chip multiprocessor

    No full text

    IP-block based integration of very high performance WLAN modem

    No full text

    Outline of a thick control flow architecture

    No full text
    corecore